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Abstract: Cryogenic electron microscopy (cryo-EM) has become widely used for the past few
years in structural biology, to collect single images of macromolecules “frozen in time”. As this
technique facilitates the identification of multiple conformational states adopted by the same molecule,
a direct product of it is a set of 3D volumes, also called EM maps. To gain more insights on
the possible mechanisms that govern transitions between different states, and hence the mode of
action of a molecule, we recently introduced a bioinformatic tool that interpolates and generates
morphing trajectories joining two given EM maps. This tool is based on recent advances made in
optimal transport, that allow efficient evaluation of Wasserstein barycenters of 3D shapes. As the
overall performance of the method depends on various key parameters, including the sensitivity of the
regularization parameter, we performed various numerical experiments to demonstrate how MorphOT
can be applied in different contexts and settings. Finally, we discuss current limitations and further
potential connections between other optimal transport theories and the conformational heterogeneity
problem inherent with cryo-EM data.
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1. Introduction

For the past several years, advances in cryo-electron microscopy (cryo-EM) have led to a revolution
in structural biology, for which the Nobel Prize in Chemistry was awarded in 2017. Mathematical
and computational methods for the 3D reconstruction of proteins have played an important role in this
revolution by allowing the technology to reach high resolution and stunning atomic-level detail [1].
Despite this spectacular success, the increasing use of cryo-EM on an ever wider range of biological
systems continues to raise new challenges. Of these, one of the most pressing includes the modeling
and inference of conformational heterogeneity [2,3]: In practice, cryo-EM experiments yield 3D
images, or so-called 3D density maps, where each voxel captures the local Coulomb potential created
by a molecule in 3D space [4]. Conformational heterogeneity in a given dataset has the potential to
inform the functional mechanism of the molecule imaged —when this heterogeneity is interpreted as a
discrete set of maps, the ability to simulate the motion between them would provide a key to generating
relevant hypothesis about the mechanism and its biological implications.

A first approach to modeling conformational heterogeneity is to employ morphing-based techniques
[5], with a standard method that consists of applying linear interpolation to obtain a trajectory of
intermediate volumes between two given EM maps [6, 7]. However, these intermediate volumes are
prone to generate unrealistic trajectories by blending the original density maps instead of displacing
them. To mitigate these issues, we recently developed a software, called MorphOT, that alternately
builds “displacement” interpolants, and yields continuous motion between EM maps [6]. The
construction of these interpolants relies on the theory of optimal transport (OT) and recent advances
that make tractable the computation of transport-based distances and barycenters of 3D shapes [8,9].

While MorphOT was presented in [6] as a short note for cryo-EM practitioners that mainly focuses
on the software, we provide in this paper a more extensive study of the method’s performance and
applications. After briefly recapitulating the theoretical framework and our specific implementation for
evaluating transport-based barycenters of EM maps, we assess how our MorphOT method compares
with standard approaches on experimental EM maps, and detail the impact of the regularization
parameter employed to approximate the OT distance, in terms of computational cost and accuracy.
We further focus on two case studies of the spliceosome and the SARS-CoV-2 spike glycoprotein, to
illustrate how our approach can be applied in the context of multiple maps to study conformational
transitions, as well as some current limitations. Finally, we discuss the potential improvements and
connections with other recent methods and problems in OT, that would help to fully study the extent
of conformational heterogeneity from cryo-EM data.

2. Overview of the method and implementation for EM maps

2.1. Interpolation from regularized 2-Wasserstein distance

For two input 3D density maps V; and V;, seen as continuous or discretized distributions mapping
the Coulomb potential of a molecule in 3D space on R? (or in practice a finite subset, e.g. [—1;1]%),
finding a continuous interpolation consists of finding a trajectory V, (0 < ¢ < 1), joining V,, and V;
in the space of distributions. For a given metric (or distance function) assigned to the volume space,
one can also define each interpolated distribution as a weighted barycenter between V;, and V;. For
instance, linear interpolants V,(O) = tVy + (1 — 1)V, are associated with the squared euclidean distance
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II.1l,, as
V¥ = argmin [¢|Vo = VI + (1 = ) IV = Vi[}3]. (2.1)
1%

Alternately, one can consider performing a “displacement interpolation” [10, 11] based on the
2-Wasserstein distance (‘W3), also known as the Earth mover’s distance (EMD). The EMD represents
the minimal amount of work needed to move one mass density / probability distribution to another, with
respect to a given cost function. To efficiently evaluate transport-based interpolants, Solomon et al.
recently introduced OT-based optimization algorithms for large geometric domains [8], which we
implemented and optimized for EM maps [6]. Briefly, the approach consists of regularizing the EMD
with an entropy parameter y > 0: for two initial and final distributions y and u;, defined on X and Y
respectively, the entropy-regularized distance distance ‘W% ,(Ho, f11) is given by

W3, (o, 1) = inf [ f d*(x, y)n(x, y)dxdy — yH(m) |, (2.2)
mell(uo.un) | Jxxy

where d(-, -) is the euclidean distance (in absence of any other information on the maps, it is chosen as

the cost function), and r is called the transportation plan, which describes which amount of mass in

x from pg gets sent to y in . [1(ug, pq) is the collection of all measures on X X Y, with marginals

on X and y; on Y, so the integral in Eq (2.2) yields the cost associated with all possible transport plans

from p to uy under the euclidean distance. H(r) is the entropy of the transportation plan n, defined as

H(r) = - ff n(x,y) Inn(x, y)dxdy. 2.3)
XxY

With (Wg’y, finding the interpolant of the EM maps V,, and V; thus consists of solving the optimization
problem

Ve = argmin | (1= W3, (o, 1)*(Vo, V) + 1W3 oo p ' (V: V) (2.4)

The regularization makes the optimization problem strictly convex, ensuring the existence of a unique
solution, which can also be seen as that of a projection problem with respect to the Kullback-Leibler
divergence [12]. This projection problem can be resolved with an efficient algorithm using iterated
Bregman projections [13] and Lagrangian optimization [8]. Furthermore, using a heat kernel makes
the computation tractable in practice, by providing an alternative to storing the matrix of pairwise
distance d*(x, y); x,y € R over a whole 3D grid of points [8], which would be prohibitive to implement
for large 3D voxelized cryo-EM maps due to the matrix’s memory footprint. As is further shown in
section 3 for EM maps, trajectories (V;)o<<; Which are obtained from ‘W 5’7 tend to be more physically
consistent and preserve shape integrity with more spread-out solutions being promoted as y increases,
in contrast with blended solutions produced by linear interpolation.

2.2. Implementation for EM maps

In practice, EM maps constitute voxelized 3D scalar fields, which represent a discretized form of
the specimen’s Coulomb potential. Their box length typically varies from tens to hundreds of voxels,
depending on the specimen’s physical size and the voxel size set by the microscopist during data
collection (for example, a large macromolecule such as the ribosome, of diameter ~ 300A, would
necessitate a box size of 400 for a small voxel size of 0.751&). Other factors to consider include the
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delocalization of information due to the point spread function / contrast transfer function, and padding
used in typical discrete Fourier transform based signal processing workflows [14].

Although a Python library for OT already exists [15], it does not include convolutional Wasserstein
distance computation, and is limited to 2D Wasserstein barycenters. For an efficient implementation
applied to 3D grid voxels, we equivalently replaced the application of the heat kernel operator from
the original algorithm in [8] by a convolution with a Gaussian of standard deviation o = 7y, which
benefits from very efficient implementation in Python [16]. Using this optimized implementation of
convolutional Wasserstein distance for 3-dimensional distributions (which to our knowledge is the first
in Python), we developed a plug-in for the software ChimeraX that is commonly used to visualize
EM maps [7]. The plug-in, called MorphOT [6], can run on both CPU and GPU, thanks to the
enabling of GPU computing (with CUDA cores) in ChimeraX. While the GPU implementation is
faster, having an option to run on the CPU may be desirable if GPU resources are being used by other
processes on a workstation, or if a local machine used for map visualization lacks GPU resources,
which is a common occurence in cryo-EM research groups. In addition to the method presented
here, we also implemented a faster approximation for morphing trajectories, as a mixed solution
that computes a fraction of OT barycenters and linearly interpolates between them, which can be
useful in case of limited computational resources or high cost inherent with larger maps. Overall, our
implementation of the present method thus allows the treatment of standard high resolution maps for
computing barycenters and generating morphing trajectories, with good computational performance
and improvement in accuracy over the standard current method, as detailed in the next section.

3. Performance study

3.1. Accuracy and comparison with linear interpolation

To evaluate the possible improvement of our transport-based interpolation over the linear
interpolation (Eq (2.1)) implemented in ChimeraX, we first performed a quantitative comparison for
two EM maps of Mm-cpn, an archaeal group II chaperonin [17], which were originally used to visualize
trajectories produced by MorphOT [6]. These maps represent two states, closed and open, of the
structure (see Figure 1) (a), so a realistic morphing trajectory should display a joint opening or closing
of the branches forming the structure. As expected, transport-based interpolation produces gradual
openings of each closed branch from the rings, showing a displacement of mass from one location to
the other (Figure 1 (a), top row). In contrast, the linear interpolation makes rings from the open state
already appear in intermediate states, with feleportation of mass occurring between closed and open
conformations (Figure 1 (a), bottom row).

To confirm the visual impression that the transport-based interpolation yields more physically
plausible transitions [6], we evaluated how the interpolations differ from one obtained by structural
morphing. While OT and linear interpolations apply for electron density maps, structural morphing
methods need a resolved atomic structure. Upon running the morph command in ChimeraX, we
generated a structural morphing trajectory between the structures associated with the Mm-cpn maps.
This structural morphing is based on a simple interpolation followed by energy minimization of each
intermediate, which offers a compromise between chemical realism and computational efficiency [18].
While it does not in general guarantee that the interpolation is exact, the structures here are simple
enough, so the motion obtained is at least physically plausible, with domains of the molecule moving
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Figure 1. Comparison with linear interpolation: (a) Top: Interpolation obtained by running
MorphOT with default parameters on two conformations of Mm-cpn [17] (EMDB 5137
and EMDB 5139). Bottom: Interpolation obtained with the linear method. (b): Using
the Yale Morph Server Algorithm (YMSA) tool with default parameters in ChimeraX [18],
we generated a structural morphing trajectory. We compared the resulting interpolants to
the ones obtained by MorphOT (red diamond) and linear interpolation (blue square) using
the RMSD (see Eq (3.1)), the global difference in volume (Eq (3.2)) and the voxel-wise
differences (Eq (3.3)). Note that for frames 0 and 20 (start and end maps), not shown here,
difference is always zero.
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To quantify how this structural morphing differs from linear and OT-morphings, we added a
Gaussian distribution around each atom to generate EM maps for each frame. We then measured
the difference with the linear and OT-morphings by first considering the classical root-mean-square-
deviation (RMSD), defined for two maps X and Y as

n L i 2
RMSD(X,Y) = ZZI(X#Y) (3.1

where 7 is the total number of voxels (= 421652 in our example), and X;, ¥; are the map intensities in
pixel i. As shown in Figure 1 (b), both OT and linear trajectories similarly differ from the structural
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(YMS) trajectory, with some variation across the frames, but with a smaller difference for the OT
interpolation that reflects its better matching.

To interpret the improvement more precisely, we introduced two additional comparative
measurements obtained after reducing the density maps into boolean maps, so each voxel gets assigned
a value of 1 if the density is greater than a threshold value (e.g. 1% of the maximum density value),
and 0 otherwise. For two EM maps X and Y, resulting in boolean maps X and ¥, we first define their
difference in volume Ay,;(X,Y) as

Avo(X,Y) = |Vol(X) — Vol(Y)|, (3.2)

where Vol(M) = Y, M;, and M, is the value of M at voxel i (M = X,Y). As this measurement
accounts for the global difference in volume (binarizing the maps allows to have a better sense of
the effective occupied volume), it allows to compare how the interpolated maps capture the change in
compactness between two input maps. After binarizing the data, the RMSD also yields a comparative
measurement of the differences in voxel bits, that is tantamount to the shape-match score of similarity
between maps used in Pintilie ef al. [19]. We denote this difference in pairwise voxel intensity as

n

1 ~ - ~ -
Avana(X, ¥) = = 3| K1 = T+ 71 = X, (3.3)

i=1

According to these measurements, the OT trajectory is consistently closer to the YMS trajectory
than the linear trajectory is, as shown in Figure 1. The difference in global volume is more significant
in the second half of the interpolation, as the structure gets closer to the closed and more compact state
(Figure 1 (b)). This reflects how the linear interpolation does not capture the increasing compactness
of the structure, by keeping all the voxels in the open state that contribute to the barycenter, including
those that are not in the closed state. In contrast, OT-interpolation turns off these same voxels as the
mass in the open state gets displaced, reducing the difference in volume with the stuctural morphing.
In the first half of the interpolation, linear and OT interpolations have similar global volumes, but
our voxel-wise comparison, which removes the low-level contributions in the RMSD, shows that the
OT-interpolation is consistently closer to the structural morphing across all frames (Figure 1 (b)).
As linear interpolation does not continuously displace the mass of the branches and instead creates
some in other parts of the grid as shown in Figure 1 (b), the newly formed mass leads to more non-
overlapping voxels and local inconsistencies with the structural morphing, which are less observed with
OT-interpolation. Interestingly, while our results suggest an improvement over the linear method, they
also indicate some differences between the OT-trajectory and the structural morphing. We examine
some potential explanations for these variations and how to improve the method in section 3.3 and the
Discussion.

3.2. Computational performance

To illustrate the performance that can be achieved for different configurations, we benchmarked the
time to interpolate between the same maps that we used in the previous comparison (Figure 1). As
MorphOT can run on both CPU and GPU, with the CuPY Python package [20] as a backend, it thus
offers various levels of performance for a wide range of machines and flexibility for the users, who can
work at different resolutions and number of frames as needed. We report in Table 1 the times obtained
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for different configurations (using CPU or GPU) and grid size (from 60° to 240° voxels, which reflects
the typical size of maps, as detailed in section 2.2).

Table 1. Benchmarking of transport-based interpolation. Using MorphOT and the volume
morph command [6] with default values, we recorded the time to interpolate between the two
EM maps shown in Figure 1. Each interpolation consists of 25 frames between the source
and the end conformation. GPU and CPU testing were done on an NVIDIA RTX 2070 Super
and a 3.5-GHz AMD Ryzen Threadripper 2950X respectively.

L. Walltime (s) | Time Per Frame (s)
Gridsize
GPU | CPU | GPU CPU
240° 59.1 | 6876.1 | 2.40 275
120° 7.0 |2304.6 | 0.30 92
60° 0.7 296.1 | 0.03 12

The results indicate that the computation of a barycenter (time per frame) can be done in a range
from 1072s to up to few seconds for larger grid sizes with GPU (~ 10 to 10?) for CPU, which gives
flexibility to quickly generate and visualize interpolating trajectories in practice. It is to be noted
that while GPU and CPU implementations produced similar performance when MorphOT was first
released [6], the recent port of Gaussian filter to CuPY’s array now allows our GPU implementation
to take place almost exclusively in GPU memory, decreasing the interpolation time dramatically to
~ 10725 per frame in a 60° grid (see Table 1).

3.3. Impact of regularization on convergence and accuracy

Our current implementation relies on setting a parameter y for the entropic-regularization of the
EMD, which in practice blurs the optimal assignment as y increases. On the other hand, the number
of iterations to convergence to a solution scales exponentially when v — 0 [21], which suggests that a
compromise between accuracy and cost needs to be found to interpolate between EM maps. To better
quantify this trade-off, we first studied how many steps the algorithm takes to converge for finding a
barycenter, as a function of y. To set our convergence criteria, we used difference threshold values
(107, 107 and 107®), and tested if the L, distance between the maps over two consecutive iterations
gets lower than this threshold (over 1500 iterations of the algorithm). We used the same maps as
previously, and computed their isobarycenter (¢ = 0.5) with different grid size (60°/120°). The number
of iterations required to converge decays supra exponentially as a function of y (see Figure 2 (a)), with
more iterations needed as the convergence criteria gets more stringent, or the grid size increases. At a
grid size of 120% and y = 0.5, the threshold was not reached (with final maps shown in 2 (b)). Aside
from convergence, the value of y also affects the level of detail. We illustrate this in Figure 2 (b),
which shows the interpolated maps at y = 0.5, 1 and 2, with more regularization resulting in a loss of
high resolution details. As the grid size increases, using the same value of vy also results in more high
resolution details (see Figure 2 (c-d)), which however comes with a larger computational cost (Figure
2 (a)). Increasing the value of y (e.g. fromy = 1 for grid size 60> to y = 3 for grid size 240°) allows to
mitigate this cost, while keeping the same level of detail. On the other hand, at lower values of v, the
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mass is more prone to scattering, resulting in a loss of integrity for the interpolated map (see Figure 2
(b) for ¥ = 0.5). In addition, numerical issues may appear as y — 0, as the kernel operator becomes
ill-conditioning with vy being too small with respect to the voxel size [8].
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Figure 2. Impact of regularization on convergence and accuracy. We applied MorphOT to
compute the isobarycenter of the same two maps as in Figure 1, for different values of 7.
In (a), we plot the number of iterations needed to reach different convergence thresholds
(107*, 107® and 107?), defined by the L, distance between the maps over two consecutive
iterations, and for grid size 60° (left) and 120* (right). The maximum number of iterations
was set at 1500, with “No convergence” shown when the threshold was not reached. (b):
We illustrate the impact of regularization on the sharpness of the interpolation, by displaying
barycenters obtained for y = 0.5, 1,2 (with convergence threshold 107® and grid size 120°).
The maps displayed are the ones obtained after 1500 iterations. (c-d): Barycenters obtained
from the same maps as Figure 2, but for different grid sizes (60° and 240%) and values of 7.

Currently the default parameters in the Chimera plugin of MorphOT are y = 1, with a maximum of
1500 iterations, convergence threshold of 107, and downsampling to 60° voxels. We recommend that
the user adjusts y such that they can achieve enough resolution in a reasonable time, depending on the
map size and level of required details. To investigate higher resolution details, larger grid size should
be used, with higher value of y. These adjustments can be simply made on Chimera X (using the
volume resample command) and MorphOT (with the reg option). In the next section, we illustrate
how MorphOT can capture the conformational transitions of other biological systems.
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4. Applications

4.1. Studying conformational transitions of the spliceosome

We first study the spliceosome, which has recently been used as a reference model for studying
continuous conformational heterogeneity from cryo-EM [22,23]. To get a reference trajectory, we
used a family of maps that represents a low-dimensional latent space of conformations, obtained from
single particle cryo-EM images [22]. We picked six reference maps that are uniformly distributed
along the first principal component of heterogeneity in the latent space [22], as shown in Figure 3 (a).
The associated trajectory keeps the foot and part of the body region of the spliceosome static, while
the SF3b and helicase subcomplexes, approximately 1/4-1/3 of the spliceosome’s mass, are “smoothly
transitioning from an elongated state to one compressed against the body of the spliceosome” [22].

Figure 3. Inferring the sequence of conformations of the spliceosome with MorphOT
(a): “Reference” ground truth trajectory from the first principal component (PCI) of
heterogeneity as analyzed by [22], showing movement of the head region of the spliceosome.
Maps 1-6 correspond to vol 000.mrc, vol 002.mrc, vol 004.mrc, vol 006.mrc,
vol 008.mrc, vol 009.mrc along PCI1 from [22] (publicly available at [24]). The contour
of map 1 is outlined in black on other maps for orientation. (b): MorphOT barycenters
matching the best with reference maps in (a), according to the RMSD. Interpolant index (¢ in
Eq 2.4) is shown with each map (grid size 256> pixels; y = 3). The contour of the barycenter
at t = 0.0 (reference map 1) is outlined in black on other maps. (¢): Heatmap showing the
L, norm between each ground truth map barycenter (¢ = 0,0.01,0.02, ..., 1.0). The red boxes
show the closest barycenter to each reference map.

AIMS Mathematics Volume 7, Issue 1, 986-999.



995

We ran MorphOT to uniformly sample one hundred barycenters between maps 1 and 6, and studied
the correspondence between these barycenters and the reference maps. In Figure 3 (b), we show the
value 7 of the interpolant V; that matches the best with each reference map, according to the RMSD (or
equivalently the L, norm), with the full heat map of pairwise L, distances between reference maps and
MorphOT barycenters in Figure 3 (¢). These values conserve the global order of the reference maps,
and correlate well with the coordinate in the latent space, as reference maps 2 to 5 (which respectively
correspond to 20, 40, 60 and 80% of the segment joining maps 1 and 6 in the latent space) get assigned
to t =20, 41, 62 and 80 % for the barycenters, suggesting that the interpolation is consistent with the
main heterogeneity component inferred from cryo-EM images.

While these results suggest that the distance scale and level of detail of MorphOT are suitable for
this example of continuous heterogenity, we should also note that the published spliceosome trajectory
used for reference here is generated from a learned latent space [22], which does not guarantee that
it is physical. With various recent methods aiming to learn a low dimensional representations of
conformational heterogeneity and expressing caution at physical correspondence [22,25,26], MorphOT
provides a potential tool to assess how dynamical trajectories on the latent space differ from trajectories
of Wasserstein barycenters, which have a simple physical interpretation of mass displacement.

4.2. Visualization of SARS-CoV-2 spike glycoprotein

We finally illustrate some limitations and directions for future improvement of the method, by
testing MorphOT with recent maps of the SARS-CoV-2 spike glycoprotein [27]. The glycoprotein
presents two states, which differ mainly by the rotation of a domain moving from the periphery of the
protein to its core while the rest of the protein remains mostly unchanged. The morphing trajectory
obtained shows a gradual motion of the domain instead of teleportation, as expected (Figure 4).
However, we observe a transient loss of connectivity of the mass as it proceeds through the trajectory,
with mass elements fragmenting away from the domain to join other parts of the molecule (see inset in
Figure 4).

, < N
"fk*;:.‘}‘\ *}a
Figure 4. Example of MorphOT trajectory (with default parameters used) between two
maps of the SARS-CoV-2 spike glycoprotein [27], shown at the top left and top right. Four

snapshots along the trajectory are shown in the bottom of the image. (center-top inset)
Detail of how the mass fragments while being transported.
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While this behavior is not unexpected from the point of view of OT theory (with amounts of
mass moving along straight lines according to the transport map), it also highlights the fact that the
transportation plan is not aware of some intrinsic properties of the molecule underlying the maps, such
as its topology or connectivity. This example highlights the need to incorporate prior information in
the transportation plan, in order to achieve morphing trajectories that respect the physics of the imaged
object, either by adding constraints coming from experimental data or from atomic models.

5. Discussion

Using the Wasserstein distance as a metric for 3D volumes, we provided a new way to interpolate
trajectories between different cryo-EM maps, which can be applied to visualize and gain more insights
on the transitions occurring between different conformations of biomolecules. This method overcomes
the limitations of the current standard linear method and has been implemented with the software
ChimeraX [6], allowing structural biologists to easily apply it to new experimental data, or revisit
previous studies. While introducing an OT-based method marked here a significant improvement for
interpolation, and could more generally serve in the study of conformational heterogeneity [28,29], we
finally stress some limitations and lines of future work, which would further connect this fundamental
problem in biochemistry with recent mathematical works and problems posed in OT.

1. Scaling algorithm for entropy-regularized barycenter computation: As we do not provide any
fine-tuning of vy other than a heuristic based on this trade-off between computational efficiency and
precision, a future improvement is to produce a refined scheme that can appropriately scale y at
each iteration. In this regard, a coarse-to-fine scheme was generally proposed for any type of cost
function [21], which would be interesting to adapt in the context of large 3D maps. It would also
be useful to quantify the relationship between y and the grid size, and in particular, determine how
to adjust y if a map is initially downsampled for fast computation, while maintaining a visually
similar barycenter.

2. Modelling more complex transport-based trajectories: An important point to stress is that
although this transport-based metric allows to provide paths which are more physically sound,
there is no guarantee that they are the true ones. In practice, Wasserstein barycenters displace the
mass from the initial distribution along transport lines given by the tranport map [30], as illustrated
in Figure 4. While we used the squared Euclidean distance as our cost function, one line of future
work will be to produce trajectories associated with cost functions that are more realistic, and/or
use prior information based on some biophysical properties of the system. Similarly to the so-
called Multi-body refinement [31], which treats the heterogeneity in EM images as the result of
the relative motion of few main rigid bodies, one can for example divide maps into rigid regions
with distinct transport cost. In the context of OT, further constraints to insure incompressibility of
the structure, stochasticity of trajectories, and other potential cost functions have been studied [9],
and can also be adapted in our case.

3. Extension to unbalanced optimal transport for variable mass: When the two maps differ in
composition and thus present different masses, the framework of the OT problem, which assumes
input measures with identical mass, is not adapted. This suggests to extend the present approach
within the framework of the so-called unbalanced optimal transport problem (UOT) [32]. In
this context, OT algorithms that can handle mass variation have been proposed, and extend the
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existing fast OT methods (with regularization) to these new unbalanced problems [32,33].

4. Studying the inverse problem and learning the conformational energy landscape: Ultimately,
understanding the mechanisms explaining the dynamics between different conformational states
can be cast as an inverse problem, aiming to recover the inner cost function associated with
observed trajectories between two shapes/conformations. This inverse problem has been an active
subject of research for the past few years, with some hypotheses made on the form of the cost
function [34-36], and various methods, from deep learning [37] to Bayesian MCMC methods
[38]. Those methods have in common that they heavily rely on the computation of many forward
OT solutions, to learn the cost function. In this regard, recent neural network approaches [39]
provide a promising and tractable approach to solve this inverse problem.
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