

THE UNIVERSITY

OF BRITISH COLUMBIA

Computational methods for unraveling ribosome structural heterogeneity

Artem Kushner¹, Shiqi Yu², Aryan Tajmir Riahi³, Simcha Srebnik², and *Khanh Dao Duc*^{*,1,3}

¹ Department of Mathematics, ² Department of Chemical and Biological Engineering, ³ Department of Computer Science, University of British Columbia, Vancouver, BC V6T1Z2, Canada

Background

Ribosome exit tunnel heterogeneity

Extracting tunnel radial variations along its centerline

Hierarchical clustering of tunnels

Multi-Dimensional Scaling (MDS) from radial plots (759 tunnel structures / 31 species)

Multiple sequence alignment of uL4

- Advances in Cryo-EM led to a surge of new ribosome structures accounting for conformational and compositional heterogeneity (Poitevin et al., Molecules 2020).
- Challenge for comparative analysis and structural heterogeneity study: inconsistent annotation of chain units and nomenclature across databases.
- We developed bioinfomatic tools and computational methods to study ribosome heterogeneitiy from 3D structures and EM maps.

Comprehensive database and visualization of ribosome structures

RiboXYZ: Database and web-application from PDB structures (Kushner *et al.*, NAR 2022) Classification framework for chain units

https://ribosome.xyz

	7	0		80	90	
cuniculus	AES	WGTG	RAVAR	I P R V R	GGGTHRSGQ	GAFG
norvegicus	A E S	wстс	RAVAR	IPRVR	GGGTHRSGQ	GAFG
spaiens	A E S	wgтg	RAVAR	IPRVR	GGGTHRSGQ	GAFG
erevisiae	A E S	WGTG	RAVAR	IPRVG	GGGTGRSGQ	GAFG
rerio	A E S	wстс	RAVAR	IPRVR	GGGTHRSGQ	GAFG
hermophila	A E S	wgтg	RAVAR	IPRVS	GGGTHRAGQ	GAFG
ombe	A E S	WGTG	RALAR	IPRVG	GGGTHRSGQ	AAFG
ondii	A E S	wстс	RAVSR	IPRVP	GGGTHRAGQ	AAFG
actis	A E S	WGTG	RAVAR	IPRVG	GGGTHRSGQ	AAFG
melanogaster	A E S	wстс	RAVAR	IPRVR	GGGTHRSGQ	GAFG
estivum	A E S	wстс	RAVSR	IPRVP	GGGTHRAGQ	GAFG
ophii	A K S	WGTG	RAMAR	VPRVR	AGGTRRAGO	GANA
lamblia	AHS	WGPG	RAVAR	LPRKH	G G I	GAYA
crofa	A E S	WGTG	RAVAR	IPRVR	GGGTHRSGQ	GAFG
alciparum	A E S	WGTG	RAVAR	IPRVP	GGGTHRAGQ	GAFG
musculus	A E S	WGTG	RAVAR	IPRVR	GGGTHRSGQ	GAFG
albicans	A E S	WGTG	RAVAR	IPRVG	GGGTHRSGQ	AAFG
lonovani	AHS	wgтg	RAVAR	IPRIS	GGGT ST SGA	GAFG
ruzi	A E S	WGTG	RAVAR	IPRIG	GGGT ST SGA	GAFG
vaainalis	A I S	WGTG	RAKAC	VPRVN	GSGSNRNGQ	GAYA

Data driven study of the tunnels enables discovering geometric differences across domains of life and species.

GET /static_files/	/cif_chain/	static_files_cif_chain_list ∖
GET /static_files/	/cif_chain_by_class/	static_files_cif_chain_by_class_list ∖
GET /static_files/	/download_structure/	static_files_download_structure_list \smallsetminus
GET /static_files/	/get_ligand_nbhd/	static_files_get_ligand_nbhd_list ∖
GET /static_files/	/ligand_prediction/	static_files_ligand_prediction_list \smallsetminus
GET /static_files/	/ranged_align/	static_files_ranged_align_list ∖

► The database contains 1679 structures (894 full structures, 422 (363) large (small) subunits) at ≤ 4 Å resolution with consistent annotation of components (e.g. RNA, proteins...).

Examples of applications and tools

Identification of landmark sites

Binding site prediction

- Standardized nomenclature enables automated extraction of structural "landmarks" (including functional clusters or specific loci)
 - Prediction of Spectinomycin binding site in T. Thermophilus based on its neighborhood residues in *E. faecalis*.
 - Database contains 1260 other unique

► Functional and evolutionary consequences for small ORFs (Yu et al. Biophysical J., 2023)

Transport based methods for studying heterogeneity from EM maps

- Optimal Transport (OT) theory \rightarrow non-linear metric for comparing EM maps (Tajmir Riahi et al., IEEE/ACM Transcactions on Computational Biology and Bioinformatics, 2023)
- Application: Improved interpolation (Ecoffet et al., Bioinformatics 2020)

Linear morphing (UCSF Chimera)

Drugbank-registered compounds.

Tunnel search algorithm (Sehnal et al., NAR 2012) constrained by PTC and constriction site landmarks

EMPOT procedure: (1) Point cloud conversion (2) transport based matching (3) rigid body alignment Applications (in progress): Ribosomal assembly landscape, atomic model fitting

References

- 1. K. Dao Duc, S. Batra, N. Bhattacharya, J.H.D. Cate and Y.S. Song (2019) Differences in the path to exit the ribosome across the three domains of life, Nucleic Acids Research, gkz106.
- 2. A. Kushner, A.S. Petrov, K. Dao Duc, (2022) RiboXYZ: A comprehensive database for ribosome structures, Nucleic Acids Research, gkac939
- 3. A. Tajmir Riahi, C. Zhang, J.Chen, A. Condon, K. Dao Duc (2023), EMPOT: partial alignment of density maps and atomic model fitting using unbalanced Gromov-Wasserstein divergence, NeurIPS workshop on Machine Learning in Structural Biology (accepted)

Research supported in part by NSERC Discovery Grants (PG 22R3468 and PG 11R02115), UBC STAIR grant and NFRFE-2019-00486 grant. (*) **Contact:** kdd@math.ubc.ca